

Astronomical Visualizations from the Research Frontiers Randall H. Landsberg

Kavli Institute for Cosmological Physics at The University of Chicago

Astronomical Visualizations from the Research Frontiers Randall H. Landsberg

Kavli Institute for Cosmological Physics at The University of Chicago

<u>Agenda</u>

I. Astro Viz Intro

- What is Going on: Research & Public
- Why Interesting
- II. Very Quick Cosmology Primer
 IV. Chicago-centric Science Examples
 •Viz & Pictures of Experiments
 V. Pretty Pictures as Time Permits

Visualization & Electronic Media

- Appropriate/Real
 - Authentic Artifacts (esp. in Astronomy = Observational Science)
 - Transport People to Inaccessible Places/Energies/ Scales
- Fast
 - Days/Hours Vs Years for Physical Exhibits
- Flexible
 - Infinite Dynamic Range (quarks to the cosmos)
 - Interactive
 - Make for One Media Adapt for Others
 - (Easy & Inexpensive to Install)
- Needed (Hardware Revolution w/o Content)
 - Museums, Web Pages, New Technologies
 - Full Digital Domes
 - Planetaria now = Visualization Theaters
 - Technology in the Classroom

Cosmus - Cosmology Museum Effort: R. Landsberg, M. SubbaRao, D. Surendran

- Visualization of Current/KICP Science
 - REAL Data
 - Software
 - New Platforms e.g., Side-by-Side Stereo & PSP
- Connecting Museums, Educators & Researchers
- Web Repository of "Products" Freely Downloadable
 - 3D Interactives
 - 2D Interactives
 - Stereo Photos
 - Movies & Animations

Cosmus Visuals

• Visualization of Data Sets

- Interactives & Movies
 - SDSS/WMAP Observations
 - Cosmic Ray Showers Simulations
 - Over Malargue, Over Chicago
 - LSS Dark Matter Simulations
 - Black Hole Center of the Galaxy
 - Supernova Explosions

• Virtual Visits & Remote Contacts

- Experiments& Exotic Locations
- Stereo Photos & Photo Essays
 - Auger
 - Veritas
 - SDSS/APO
 - Mars
 - SZA
 - South Pole

GeoWall 3D

- Side by Side Stereo Projection
 - Different Views for Right & Left Eyes
- Components (Off the Shelf Hardware <\$10K)
 - CPU w/Dual Video Output
 - 2 DLP Projectors
 - (Adjustable Rack for Projectors)
 - 2 Polarizing Filters (linear or circular)
 - Crossed Polarizing/3D Glasses
 - Polarization Preserving Screen
- Software (mostly freeware)
 - Partiview, Walkabout, Immersaview, Wallview, PokeScope

Mini Modern Cosmology Primer Makeup of Universe Today

4%

Visible Matter (stars 0.4%, gas 3.6%)

26%

Dark Matter (suspected since 1930s known since 1970s)

Also: radiation (0.01%) Dark Energy (suspected since 1980s known since 1998)

70%

Universe Observed Today: Matter

Sloan Digital Sky Survey Mapping the Observable Universe

3D Map 25% Sky Large Scale Structure of the Universe >180M Celestial Objects - Photometry >1M galaxies/quasars - Spectroscopy

Survey Geometry On the Sky:

Northern Survey: ~1/4 the sky

Southern Survey: 3 slices

(Look away from the Milky Way)

Apache Point Observatory Southern New Mexico

SDSS 2.5-meter telescope

SDSS Digital Camera

Top to bottom:

g' z' u' i' r' filters

Drift Scan Mode

120 Megapixels

Cooled to –200 degrees

Spectroscopic Plates for Redshift Survey 640 Fibers per Plate

Dark Matter -Direct Mapping/ Detection

Galaxy Cluster Abell 2218 NASA, A. Fruchter and the ERO Team (STScI) • STScI-PRC00-08

HST • WFPC2

Z = 40.52

Dark Energy (Map Maker) I

X

Dark Energy II

10³ 5×10²

Dark Energy III

Counts per Az=0.01

Particles from Space Ultra High Energy Cosmic Rays

- Pierre Auger Observatory (Malague, Argentina)
- VERITAS (AZ)

VERITAS

- Gamma Ray Telescope -Arizona
- Seven 36 feet dishes w/ 315 mirrors each
- Will search for very high energy gamma rays from:
 - black holes
 - pulsars,
 - gamma-ray bursts
 - supernova remnants
 - globular clusters
 - galaxies including our own

10-100 GeV Shower

Auger Observatory -Pampas of Argentina

- Ultra-High Energy Cosmic Rays [10²⁰eV] expect 1/km²/century
- Size of Rhode Island
- Lead by Jim Cronin Noble Laureate
- 10²⁰eV impact produces 10¹¹ particles over 20km²

Stereo Photo

purple-gammas yellow -electrons-positrons red muons green pions cyan neutrons blue protons

Black Hole - Center of Milky Way Galaxy

- DATA
 - Observation of Central Stars
 - Multiple Years
 - Using AO
- From Motions & Freshman Physics Deduce -SUPER MASSIVE OBJECT
- Can Predict Future Orbits
- Andrea Ghez (UCLA)
- Basis for Textbook Problems

Year: 1995.2

The Acceleration of Stars Orbiting the Milky Way's Centrol Black Hole (Ghez et al, Nature 407:349, 2000)

Data: Andrea Ghez, Jessica Lu (UCLA) Visualization: Dinoj Surendran, Randy Landsberg, Mark SubbaRao (UChicago / Adler / KICP)

COMIS

UCLA Galactic Center Group

Where to Look for This Eye Candy

• Cosmus Website

- <u>http://astro.uchicago.edu</u> cosmus
- YouTube
- GoogleVideo
- South Pole Telescope Website (SPT)
 - spt.uchicago.edu or google spt
- KICP NSTA Website
 - <u>http://kicp.uchicago.edu/nsta</u>

Thanks To

- Kavli Institute of Cosmological Physics
 Kavli Foundation
 - National Science Foundation (NSF)
 - NSF PHY-0114422
- Mark SubbaRao (UC/Adler)
- Dinoj Surendran (UC CS)

*

The End